Pandas进阶
本章介绍pandas层次化索引,索引的堆(stack),以及多层索引聚合操作,拼接操作
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。经过多年不懈的努力,Pandas 离这个目标已经越来越近了。
Pandas 适用于处理以下类型的数据:
Pandas 的主要数据结构是 Series(一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。对于 R 用户,DataFrame 提供了比 R 语言 data.frame 更丰富的功能。Pandas 基于 NumPy 开发,可以与其它第三方科学计算支持库完美集成。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
.ipynb
的JSON
格式文件,还可以导出为:HTML、PDF、MarkDown、Python等格式。有些时候,我们的服务运行时必不可少的会产生一些日志,或是我们需要把容器内的数据进行备份,甚至多个容器之间进行数据共享,这必然涉及容器的数据管理操作。
容器中管理数据主要有两种方式:
数据卷
数据卷容器
REmote DIctionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-value存储系统。
Redis是一个开源的使用ANSI C语言编写、遵守BSD协议、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
它通常被称为数据结构服务器,因为值(value)可以是 字符串(String), 哈希(Hash), 列表(list), 集合(sets) 和 有序集合(sorted sets)等类型。
有些时候我们需要在不启动django
的时候通过ORM操作数据,所以我们就需要配置离线脚本
1 | import os |